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Abstract. Systematic degeneracies of electron and phonon energy spectra of stereoregular
polymers are determined by the dimensions of unitary irreducible representations (reps) of
line groups (L), as far as the spatial symmetries are concerned. However, time reversal (8)
invariance of the Hamiltonian can bring in some extra degeneracies. These are determined
for the reps of all the line groups. A physical interpretation of the results is given in terms of
the action of  onto the quantum numbers arising from line-group symmetry. Finally,
corepresentations of the groups L*=L+6L and the corresponding symmetry-adapted
bases are also obtained.

1. Introduction

1.1. Representations of line groups and time reversal

Chain-like or quasi one-dimensional physical systems, such as stereoregular polymer
molecules but also some well defined, weakly interacting subsystems of certain highly
anisotropic materials, are of considerable current research interest (André et al 1980,
Barisi¢ et al 1979). The most important physical means for studying such systems
include infrared absorption, Raman scattering, x-photoelectron spectroscopy, etc. The
success of these studies depends, however, on our knowledge of the corresponding
phonon and electron energy spectra, obtained generally as the solutions of the
eigenvalue problems, HV = ¢V, of the respective Hamiltonians H. Line groups L
(Vujiéi¢ et al 1977, to be referred to as LG) describe the spatial symmetries of such
systems and hence the dimensions of irreducible representations of these groups
(Bozovié etal 1978, to be referred to as I, Bozovi¢ and Vujici¢ 1980, to be referred to as
IT) determine the corresponding systematic degeneracies of the mentioned spectra.
However, in the case of phonons one finds also that H¥* = ¢¥*; since the band
structures of polymers are in most cases obtained in the single spinless electron
approximation (André et al 1980), the same statement is also then valid for electrons.
(A comment on the influence of spin will be given later, in § 3.3.) This simple fact can in
some cases bring in extra degeneracies and in this paper we find all such cases for the line
groups.
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More precisely, the problem we solve here is ‘what happens to the unitary irre-
ducible representations (reps) of a line group L when it is extended into L* =L+ 6L’,
where 6 is the anti-unitary, antilinear operator of time reversal, for every rep of each L.
Notice that in our case 8 acts as the complex conjugation (denoted by the asterisk) and
commutes with the elements of L: 4% =¥* and 8(R|7)= (R |7)6 for every (R|7)e L.
This definition is sufficient for our present purpose; more general situations are dealt
with in a recent essay (Domingos 1979) where a clear exposition of physical ideas
underlying time-reversal symmetry can be found.

1.2. General methods of determining extra degeneracies

A method to solve the above problem was given long ago (Wigner 1932)%.

Let d(L) be arep of the group L; one callsit: type a if d (L) ~ d*(L) (where ~ denotes
the equivalence of two reps) and both are equivalent to a real representation ; type b if
d (L) d*(L); type c if d(L)~d*(L), but they are not equivalent to a real representation.

When L is enlarged into L®, then: the degeneracy is doubled if d(L) is of type b or c,
while there is no extra degeneracy if d(L) is of type a.

More practical ways to perform the above classification arise from the following two
theorems, specialised here to line groups.

Theorem 1. (Herring 1937). Let
d*(L)=8""d(L)S (1)
where S is a unitary matrix; then d(L) is of

type a iff S§*=1I
type ¢ iff SS*=-I

Theorem 2. (Frobenius and Schur 1906). Let x(L) denote the character of d(1.). Then

1 1 iffd(L) is of type a
0 o (R Im%=¢ 0 iff d(L) is of type b
(RlneL -1 iff d(L) is of type c.

Here |L|is the order of the line group L which is assumed to be made finite via the cyclic
boundary conditions (cf I).

2. Classification of reps of line groups according to the complex conjugation

Making use of theorems 1 and 2, and the tables of reps given in I and II, we have
classified the reps of all the line groups according to whether they belong to type a,borc
with respect to the complex conjugation. The results are given in tables 1-15 (for each
family of line groups separately). Inaddition, we give explicitly for every rep d of type b

+ The types a, b and ¢ of Frobenius and Schur were denoted in Wigner’s article by I, III and II respectively; the
first convention was also used by Herring and seems to be prevailing, at least in solid-state physics.
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the symbol (i.e. the quantum numbers) of its complex-conjugate rep d*. The range of
the quantum numbers defining such reps is always appropriately restricted so that each
pair of mutually conjugate reps appears only once in the tables. For the reps of types a
and c, a unitary matrix § satisfying (1) is also given; note that the general solution is
S'=explip)S, 0= ¢ <27 but in the tables we omit this phase factor for the sake of
brevity.

Several (more or less obvious) facts have been made use of to further check the
entries:

(i) arep is of type b iff its character is not real;

(ii) one-dimensional reps are of type a if they are real, and of type b otherwise;

(iil) if the character of a rep is real, but the determinants of matrices of that rep are
not all real, the rep is of type c;

(iv) two reps differing by real scalar factors are of the same type. (This is the case
e.g. for k =0 and k = m/a reps of each symmorphic line group, cf I and I1.)

The number of non-equivalent reps was controlled via the Burnside theorem (cf Jansen
and Boon 1967, Streitwolf 1971).

Remark. The notation for line groups and their reps in these tables is the same as in
LG, I and II (with which we assume familiarity). The only exception is that throughout
this paper we have chosen the translational period, a, to equal unit length (i.e. a = 1);
thus here we have A, and —7 <k < 7 as compared with ,,,A,, and ~w/a<k <m/a
in I, etc.

2.1. Classification of the reps of the line groups isogonal to C,

Table 1. The line groups Ln (n =1, 2, 3,...); their reps are given in table 1 of I. Here
0 <k <7 (note that we have chosen a =1, incontrastto I); m=1,2,...,(n-1)/2 forn
oddand m=1,2,...,(n—2)/2 for n even.

Forn=1,2,3,... onlyn=2q=2,4,6,...
d OAO OAm kAO kAm+ rrAO ‘rrAm ()Aq kAq ‘rrAq
d* ()AO OAvm ﬂkAO —kA—-m+ rrAO 7rA~m OAq *kAq qu
Type a b b b a b a b a
S 1 / / / 1 / 1 / 1
tHere m==%1,%2,...,+(n—1)/2forn oddand m ==1,%2,..., £{(n —2)/2 for n even.

Table 2. ThelinegroupsLn, (n=2,3,4,...;p=1,2,...,n—1);cftable2of I. For k and
m see the caption of table 1. :

only for only for
Forn=1,2,...;p=1,2,...,n—1 onlyfor n even p even n—p even
d OAO OAm kAO kAmT #Ami OAn/2 kAn/2 ‘rr‘A—p/Z #A(VI‘P)/Z
a* 040 oA m kAo kAT RAsT 0An/2 —kAns2 A2 wAnpz
Type a b b b b a b a a
N 1 / / / / 1 / 1 1
tHere m==x1,=x2,...,x(n—1)/2for n odd and m ==x1,+2,..., £(n -2)/2 for n even.

tInthiscase —p/2<m<(n-p)/2withm=—-m—pfor—p/2<m<n/2—-pandm=n-m-pforn/2—p=
m<(n-p)/2.
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2.2. Classification of the reps of the line groups isogonal to C,,,

Table 3. The line groupsLrnm (n=1,3,5,...)andLumm (n=2,4,6,...);cftable4inl.
Here O0<k<m;, m=1,2,...,(n—1)/2 for n odd, while m=1,2,...,(n—-2)/2 for n
even; p=(1 o).

Forn=1,2,3,...

d 0Ao oBo 0Em,-m kAo «Bo «Em,—m Ao ~Bo 7Em—m
d* OAO OBO OEm,—m —kAO —kBO -kEm.~m ‘IYAO 'rrBO ﬁEm.~m
Type a a a b b b a a a
S 1 1 P / / / 1 1 P

and only forn =2¢=2,4,6,...
d 0Aq oBq Ag «Ba »Aq =Bq
a* OAq OBq —kAq -kBq qu ﬂBq
Type a a b b a a
S 1 1 / / 1 1

Table 4. Theline groupsLuc{n=1,3,5,...)andLncc (n=2,4,6,...);cftable 5in I For
k, m and P see the captionof table 3; F = (.9 3). (i) The data for the reps ¢ Ao, 0Bo, oEm.—m»
04y 0By Ao, Bos kEm-m» kAq and (B, coincide with those given in table 3 for the
respective reps of Lnm and Lamm.

(ii) Forn=1,2,3,... only n=29g=2,4,6,...
d 1rAO nEm.~m 'n-Aq

d* ﬂ'BO wEm,—m qu

Type b c b

S / F /

Table 5. The line groups L(2g),mc (n =29 =2,4,6,...);cftable 6in[. Here 0<k <=
andI=( 7). (i) For oAo, 0Bos 0Em —ms 0Ag 0B kA0 £Bos 1Em—ms kAq and B, cf table 3.

(i1) Forg=1,2,3,... onlygq=2v=2,4,6,...
d 'n-AO WBO wEm.~m+ ‘HEL‘,—L‘

d* ‘rrAq qu nErFt,—-vﬁ ‘rrEh -v

Type b b b a

N / / / I

tHerem=1,2,...,(q—1)/2forqoddand m=1,2,...,(q—2)/2 for g even; it =q —m.

2.3. Classification of the reps of the line groups isogonal to Cyp,

Table 6. The line groups Lun/m (n=1,2,3,...); cf table 8 in I. For &k, m and P see the
caption of table 3. i

Forn=1,2,3,... onlyn=2g=2,4,6,...
d 0AT oA TiEo  TiEn A5 A 0AI  TFE, AL
d* 0AT  oAZ. kB0 TEE-m A AL 0AT  TEE,  LAD
Type a b a b a b a a a
S 1 / P / 1 / 1 P 1
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Table 7. The line groups L(2g),/m (n =29 =2,4,6,...);cftable9in1. Fork, m and Psee
the caption of table 3. (i) For the reps gA5, oArm, oAq*, "’;Eo, _’;Em, _ﬁEq see the
corresponding entries of table 6.

(if) Forg=1,2,3,... onlyforg=2v=2,4,6,...
d R S EvC

a* Eq R nEy"

Type a a a

S P / I

tHerem=1,2,...,(q—1)/2forqoddand m =1,2,...,(q—2)/2forgeven; m=g—m.

2.4. Classification of the reps of the line groups isogonal to S5,

Table 8. The line groups La (n=1,3,5,...)and L(2n) (n =2,4,6,...);cf table 11 in L.
For k, m and P see the caption of table 3; F = (_} §).

Forn=1,2,3,... only n=2q=2,4,6,...
d A7 oAn  TkEo  TiE. AT AL oAy TEE.  sAg
a* 0Ao 0AZ, xEo E-m »AS AL 0Aq “kEq =Aq
Type a b a b a b b ¢ b
S 1 / P / 1 / / F /

2.5. Classification of the reps of the line groups isogonal to D,

Table 9. The line groups Ln2 (n=1,3,5,...)and Ln22(n=2,4,6,...);cftable 13in 1.
For k, m and P see the caption of table 3. All these reps are of type a.

Forn=1,2,3,... only n=29=2,4,6,...
d 0AS  oEN" TkEe  TKELTT JAT BN 0As  kE,  LAj
S 1 P P P 1 P 1 P 1
tHere m==+1,+2,...,+(n—1)/2forn oddand m==1,+2,...,x(n —2)/2 for n even.

Table 10. The line groups Ln,2(n =3,5,7,...)andL#n,22 (n=2,4,6,...);cftable 14in
L. For k, m and P see the caption of table 3. (i) oA5, 0Em™s 0AL, "Eos kEW", _’;Eq same as
in table 9. All these reps are of type a.

Forn=1,2,3,...;
(ii) p=1,...,n-1 only for p even only for n —p even
d Ent . A, Al—p)2
S P 1 1

tHere —p/2<m<(n—-p)/2; m=—-m—p for —p/2<m<n/2~-p and m=n—m—p for
nf2-psm<(n—-p)/2.
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2.6. Classification of the reps of the line groups isogonal to D, 4

Table 11. The line groups Lam (n =1,3,5,...)and L(ﬁ)?.m (n=2,4,6,
and 6 in II. Here k, m and P are the same as in table 3;

1=(; ) and o=(0 "

...);cf tables 5

0 1 M 0
where
§ 2 0
M= (expuma/ ) . > a=2m/n.
0 exp(—ima/2)
Forn=1,2,3,...
d 0AS  oBF  oEm-m  kEac By KGum  <AG  Bi  nEmwm
S 1 1 P P P Q 1 1 P

All these reps are of type a.

andonlyforn=2¢g=2,4,6,...

d oE, “RESs Eq
a* B, “EB: <Eq
Type a a
S I / I

Table 12. The line groups Lic (n=1,3,5,...)and L(E;)Zc (n=2,4,6,..

.); cf table 7 in

II. For k, m and P see the caption of table 3. (i) The data for the reps Ay, 0B, 0E m —m»
oEq, ";EAO, ",EEBO, _’;Gm,_m, "ﬁEﬁg and _ZEﬁg coincide with the corresponding ones in

table 11.

(ii) Forn=1,2,3,... only n=2g=2,4,6,...
d ﬂEO wE;Ln,—mrr Aq:t

d* “Eo  wEmem B:

Type a b b

S P / /

2.7. Classification of the reps of the line groups isogonal to D,

Table 13. The line groups L(2_n)2m (n=1,3,5,...)and Ln/mmm (n=2,4,6,...); cf
tables 8 and 9 in II. For k, m and P see the caption of table 3; I = (; Dand H=(2 5. All

these reps are of type a.

Forn=1,2,3,...
d 0A5  oBi  oFm-m  «Eac  kEms  kGu-m A5 2Bs  .Em-m
s 1 1 P P P H 1 1 P
and only for n =2q =2,4,6,...
d 0AT  oBf  KEa, “AEs, AL .B:

S 1 1 P P 1 1




Representations of line groups: IIT 1831

Table 14, The line groups L(ﬁ)Zc (n=1,3,5,...)and Ln/mcc (n=2,4,6,...); cf table
10in II. For k, m and P see the caption of table 3. (i} For ¢AF, 0BG, 0oE . —m> 0A7» 0B3,
“XEag “KEpg kGp-m £Ea, and “EEg, see table 13.

(i1) Forn=1,2,3,... onlyn=2g=2,4,6,...
d ~Eo wEmm ~Eq

d* ﬂEO -nEr_n.'—m ﬂ'rEq

Type a b a

S P / P

Table 15. The line groups L(2q),/mcm (n =29 =2,4,6,...); cf table 11 in II. For k, m
and P see the caption of table 3; I = ¢ DandH=0G 5). ()AL, 0B, oEm—ms 0AT, 0B5,
_',;'EAO, _',:EBU, _ﬁGm,_m, _EEAq and “ﬁEBq as in table 13. All these reps are of type a.

(ii) Forg=1,2,3,... onlyg=2v=2,4,6,...
d -Eds  LEBy LGRInt e
S P P H I

tHerem=1,2,...,(q—1)/2forqoddand m=1,2,...,(q—2)/2for g even; i =q—m.

3. Further applications

3.1. Coreps and uMaM reps of L* = L+ 6L

In accordance with our physical motivation, attention was focused onto extra
degeneracies arising from time-reversal invariance of the Hamiltonian; however, tables
1-15 contain more information. The grey line group L™ = L+ L = L®{E, 6} contains
both linear and antilinear operators so that one might use irreducible corepresentations
(coreps; cf Jansen and Boon 1967) or unitary matrix-antimatrix representations
(UMAM reps; cf Herbut et al 1980), to label the bands etc. Now, given a rep d(L), the
data presented in the above tables are sufficient to write down the corresponding coreps
or UMAM reps immediately; the recipes (Jansen and Boon 1967, Herbut et al 1980) are
summarised in table 16,

Table 16. (i) Construction of coreps D(L™) out of given reps d(L).

Type of d D(R|7) D(8) D[8(R|7)]=D(8)D(R|r)*
a d(R|7) s Sd*(R|7)
d(R|7) 0 0 T 0 d(R|7)
b < 0 d*(RI-r)) (1 0) <d*(R|~r) 0 )
d(R|7) © 0 S 0 Sd*(R|7)
¢ ( 0 d(R\r)) (—s o> (—Sd*(RlT) 0 )
(i) Construction of UMAM reps D*(L™) out of d(L):
D*R|7)=DR|" D*(8)=D(9)K 2a)
DA8(RI7]=D*6)D*R|r)=D[6(R|7)K (2b)

where D(R | 1), D(8) and D[6(R | )] are defined in (i) and K is the antimatrix (cf Herbut et
al 1980), such that KM = M*K for every matrix M. Conceptual and mnemotechnical

advantages of the UMAM rep concept arise from the homomorphism, which is restored by
(2b).
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Note that two coreps of L are equivalent iff they subduce equivalent reps of L
{Jansen and Boon 1967, p 174) so that for reps of types a and ¢ the matrices S and
S’ =exp(ip)S give rise to equivalent coreps. Tables 1-15 were designed to produce a
complete set of non-equivalent coreps and hence only one matrix § has been given for
each such rep; for the same reason each pair of conjugate reps of type b appears only
once in these tables.

3.2. Symmetry adapted bases

If a symmetry adapted basis (SAB) {¢1, . . . , ¢, } for arep d (L) is known, the data quoted
in tables 1-15 enable one to write down the corresponding saB for the corep D(L*), in
which the latter will be in its standard form as given in table 16. Let ¢, =3/_; SFyF,
i=1,...,n Then the required sAB for D(L™) is

Ui+, .., Ut dn} if d(L) is of type a
{1, ... b, 0¥, .., 0k} ifd(L)isof typeb
{1, .., b1,...,bat  ifd(L)isof typec.

Proofs of these statements are given for cases a and b in Jansen and Boon (1967); a
proof for the third case can be easily reconstructed along the same lines.

3.3. Influence of spin

The classification of reps given here resolves the problem of finding extra degeneracies
induced by time-reversal symmetry also when one deals with half-integral spins. In that
case (cf Streitwolf 1971): the degeneracy is doubled for type a and b reps, while there is no
extra degeneracy for type c reps. This might be of relevance for those approaches to
electron spectra of polymers that go beyond the restricted Hartree—-Fock method, such
as alternant molecular orbitals, aAM0O (Calais 1980) or different orbitals for different
spins, poDs (Kertész ef al 1976, 1979) schemes etc.

4. Concluding remarks

The tables 1-15 enable a user to determine effortlessly whether time-reversal symmetry
brings in some extra degeneracies of electron bands or vibration branches of a polymer
or not; the task we set in the introduction is thus solved. However, a brief discussion of
some overall aspects of the results obtained might be in order.

First, a variety of possibilities is realised. Thuse.g. Ln,2 line groups have only type a
reps, Ln/m have both a and b, and Lac have a, b and c in spite of similar structure of
these groups and their reps. If we focus our attention on the quantum numbers
distinguishing the reps we also observe substantial differences. Thus e.g.

(i) #-symmetry connects E; ., and _E; ;1 reps of L4,mc, thus bringing in extra
two-fold star degeneracy (i.e. e (k) = e(—k));

(ii) similarly; @ couples “YE, and fE_; reps of L4,/m, but here it brings in extra
two-fold band degeneracy (i.e. e (im = 1) = g¢(m = —1) throughout the Brillouin zone),
while

(i) in the case of "fET" rep of L4,2 simply nothing happens when 6 is added.
(The notions we use here are familiar in solid-state physics where analogous situations
are encountered; for a good account see e.g. Streitwolf (1971), Cracknell (1975).
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To recognise some general trends in this variety of cases we have to resort to
somewhat more elaborate group theoretical concepts. First, note that here we are
dealing with solvable groups possessing normal subgroup chains like e.g.

T <<Ln <tLnc <sLisc (3)
or

T <L(2q), <L(2q)mc <L(2q),/mcm 4)

etc. (Here H <s G means that H is a normal subgroup of G.) Utilising this fact we use
the A, reps (all of which are one-dimensional) of the Ln, line groups as building
blocks to induce all the others (cf LG, I and II).

Next, observe that the quantum numbers of A, (namely k and m) have kinematical
meaning—they describe quasi-momentum (related to the translational symmetry) and
quasi-angular momentum (related to the screw-axis symmetry) of a particle (or a
quasi-particle), respectively. As expected from this physical interpretation, the action
of 8 on these two quantum numbers is given by

0. k->—k 8:m->—m. (5)

At first sight some exceptions to this rule seem to appear for some special values of k&
and m, namely k =0 or k =7 and m =0 or m =q =n/2. However, these cases also
start fitting into the scheme (5) as soon as one takes into account appropriate
‘periodicity relations’ for these reps, e.g.

kAm(an) = k+21rAm—p(an) (6)

etc, enabling conversions like _,A,, = ;A,,_, to be made.

Then, we can proceed upwards along the subgroup chain, similar to (3) or (4), by
adding new spatial symmetry transformations (o, o, or U) and building the reps of in
this way enlarged groups (i.e. minimal extensions; cf LG, I and 11 for the line groups and
Herbut er al (1973) for a general account). The action on k and m—again in
accordance with their physical meaning—can be summarised as:

m-—-m m->m m->—-m

UV:k-—)k o'h:k_)_k U‘k—>—k @)

(with the same explanation valid for the above-mentioned special values of k and m).

Now we are in a position to understand why additional time-reversal symmetry
produced such different effects in the examples (i)-(iii) given above. The systematic
band degeneracy (among .A:(L4,) and A _;(L4,) states for each k point in the
Brillouin zone) is produced by o, in case (i) and by joint action of oy, and € in case (ii),
while it is absent in case (iii), as follows from (5) and (7). We further conclude that this
band degeneracy will be lifted by e.g. a homogeneous magnetic field parallel to the
chain axis in case (ii), while it will be still preserved in case (i). A similar analysis can be
readily performed for every line group.

Acknowledgment

The manuscript was read by Professors F Herbut and M Vuji¢ié and by Mr M
Damnjanovi¢, and their comments helped us to improve the presentation,



1834 I BoZovi¢ and N BoZovié¢
References

André J-M, Brédas J-L, Delhalle J, Ladik J, Leroy G and Moser C (ed.) 1980 Recent Advances in the
Quantum Theory of Polymers: Lecture Notes in Physics 113 (Berlin: Springer)

Baridi¢ S, Bjeli§ A, Cooper J R and Leonti¢ B (ed.) 1979 Quasi One-Dimensional Conductors I, II: Lecture
Notes in Physics 95, 96 (Berlin:Springer)

Bozovi¢ I and Vujicié M 1981 J. Phys. A: Math. Gen. 14 777-95

Bozovi¢ I, Vujici¢ M and Herbut F 1978 J. Phys. A: Math. Gen. 11 2133-47

Calais J-L. 1980 Recent Advances in the Quantum Theory of Polymers: Lecture Notes in Physics 113 ed. J-M
André, J-L Brédas, J Delhalle, J Ladik, G Leroy and C Moser (Berlin: Springer)

Cracknell A P 1975 Group Theory in Solid State Physics (London: Taylor and Francis)

Domingos I M 1979 Int. J. Theor. Phys. 18 213-30 ‘

Frobenius G and Schur I 1906 Sitzber. Akad. Wiss. Berlin Phys. Math. Kl 186-208

Herbut F, Vuji¢ié M and Sijatki Dj 1973 J. Math. Phys. 14 11214

Herring C 1937 Phys. Rev. 52 361-5

Jansen L and Boon M 1967 The Theory of Finite Groups (Amsterdam: North-Holland)
Kertész M, Koller J and AZman A 1976 Phys. Rev. B 14 76-7

—— 1979 Phys. Rev. B 19 2034-40

Streitwolf H W 1971 Group Theory in Solid State Physics (London: MacDonald)
Vuji¢ié M, Bozovi¢ I B and Herbut F 1977 J. Phys. A: Math. Gen. 10 1271-9

Wigner E 1932 Nachr. Akad. Wiss. Gottingen Math. Phys. KI. 546-59



