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Abstract. Systematic degeneracies of electron and phonon energy spectra of stereoregular 
polymers are determined by the dimensions of unitary irreducible representations (reps) of 
line groups (L), as far as the spatial symmetries are concerned. However, time reversal (6) 
invariance of the Hamiltonian can bring in some extra degeneracies. These are determined 
for the reps of all the line groups. A physical interpretation of the results is given in terms of 
the action of 6' onto the quantum numbers arising from line-group symmetry. Finally, 
corepresentations of the groups LA = L + 6'L and the corresponding symmetry-adapted 
bases are also obtained. 

1. Introduction 

1.1. Representations of line groups and time reversal 

Chain-like or quasi one-dimensional physical systems, such as stereoregular polymer 
molecules but also some well defined, weakly interacting subsystems of certain highly 
anisotropic materials, are of considerable current research interest (AndrC et a1 1980, 
BariSiC et a1 1979). The most important physical means for studying such systems 
include infrared absorption, Raman scattering, x-photoelectron spectroscopy, etc. The 
success of these studies depends, however, on our knowledge of the corresponding 
phonon and electron energy spectra, obtained generally as the solutions of the 
eigenvalue problems, H\Ir = ~ 9 ,  of the respective Hamiltonians H. Line groups L 
(VujiEiC et a1 1977, to be referred to as LG) describe the spatial symmetries of such 
systems and hence the dimensions of irreducible representations of these groups 
(BoioviC et a1 1978, to be referred to as I, BoioviC and VujiEiC 1980, to be referred to as 
11) determine the corresponding systematic degeneracies of the mentioned spectra. 
However, in the case of phonons one finds also that H\Ir* = EV* ;  since the band 
structures of polymers are in most cases obtained in the single spinless electron 
approximation (AndrC et a1 1980), the same statement is also then valid for electrons. 
(A comment on the influence of spin will be given later, in 8 3.3.) This simple fact can in 
some cases bring in extra degeneracies and in this paper we find all such cases for the line 
groups. 

0305-4470/81/081825 + 10$01.50 @ 1981 The Institute of Physics 1825 



1826 I BoioviC and N BoiouiC 

More precisely, the problem we solve here is 'what happens to the unitary irre- 
ducible representations (reps) of a line group L when it is extended into LA = L+ 8L', 
where 8 is the anti-unitary, antilinear operator of time reversal, for every rep of each L. 
Notice that in our case 8 acts as the complex conjugation (denoted by the asterisk) and 
commutes with the elements of L: 8 q  = ** and 8(R 1 T) = ( R  i  ~ ) 8  for every ( R  I T )  E L. 
This definition is sufficient for our present purpose; more general situations are dealt 
with in a recent essay (Domingos 1979) where a clear exposition of physical ideas 
underlying time-reversal symmetry can be found. 

1.2. General methods of determining extra degeneracies 

A method to solve the above problem was given long ago (Wigner 1932):. 
Let d(L) be a rep of the group L ;  one calls it: type a i f d  (L )  - d * ( L )  (where - denotes 

the equivalence of two reps) and both are equivalent to a real representation ; type b if  
d ( L )  + d * ( L ) ;  type c if d(L) - d * ( L ) ,  but they are not equivalent to a real representation. 

When L is enlarged into LA, then: the degeneracy is doubled if d ( L )  is of type b or c, 
while there is no extra degeneracy if d ( L )  is of type a. 

More practical ways to perform the above classification arise from the following two 
theorems, specialised here to line groups. 

Theorem 1. (Herring 1937). Let 

d * ( L )  = S-'d(L)S 

where S is a unitary matrix ; then d (L )  is of 

type a i f f  ss* = I  

type c iff SS* = -I. 

Theorem 2. (Frobenius and Schur 1906). Let x (L )  denote the character of d ( L ) .  Then 

1 i f d ( L )  is of type a 
- c X[(R Id2]= i f f  d (L)  is oflype b 

i f d ( L )  is of type c. 

1 
ILI (RIT)EL 

Here /L/  is the order of the line group L which is assumed to be made finite via the cyclic 
boundary conditions (cf I ) .  

2. Classification of reps of line groups according to the complex conjugation 

Making use of theorems 1 and 2, and the tables of reps given in I and 11, we have 
classified the reps of all the line groups according to whether they belong to type a, b or c 
with respect to the complex conjugation. The results are given in tables 1-15 (for each 
family of line groups separately). In addition, we give explicitly for every rep d of type b 

The types a, b and c of Frobenius and Schur were denoted in Wigner's article by I, I11 and I1 respectively; the 
first convention was also used by Herring and seems to be prevailing, at least in solid-state physics. 
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the symbol (i.e. the quantum numbers) of its complex-conjugate rep d' .  The range of 
the quantum numbers defining such reps is always appropriately restricted so that each 
pair of mutually conjugate reps appears only once in the tables. For the reps of types a 
and c, a unitary matrix S satisfying (1) is also given; note that the general solution is 
S' = exp(iq5)S, 0 s 4 < 2rr but in the tables we omit this phase factor for the sake of 
brevity. 

Several (more or less obvious) facts have been made use of to further check the 
entries: 

(i) a rep is of type b iff its character is not real; 
(ii) one-dimensional reps are of type a if they are real, and of type b otherwise; 
(iii) if the character of a rep is real, but the determinants of matrices of that rep are 

not all real, the rep is of type c; 
(iv) two reps differing by real scalar factors are of the same type. (This is the case 

e.g. for k = 0 and k = n-/a reps of each symmorphic line group, cf I and 11.) 
The number of non-equivalent reps was controlled via the Burnside theorem (cf Jansen 
and Boon 1967, Streitwolf 1971). 

Remark. The notation for line groups and their reps in these tables is the same as in 
LG, I and I1 (with which we assume familiarity). The only exception is that throughout 
this paper we have chosen the translational period, a, to equal unit length (i.e. a = 1); 
thus here we have =Am and -IT < k s IT as compared with ,,,A, and - r / a  < k s rr/a 
in I, etc. 

2.1. Classification of the reps of the line groups isogonal to C,, 

Table 1. The line groups Ln ( n  = 1, 2 ,3 ,  . , . ); their reps are given in table 1 of I. Here 
0 < k < T (note that we have chosen a = 1, in contrast to I); m = 1 , 2 , .  . . , ( n  - 1112 for n 
odd and m = 1 , 2 ,  . . . , ( n  -2)/2 for n even. 

For n = 1 , 2 , 3 , .  . . only n = 2q = 2, 4, 6 ,  

i Here m = *l, i 2 , .  . . , *(n - 1)/2 for n odd and m = *I,  *2,. . . , *(n -2) /2  for n even. 

Table 2. The line groups Ln, ( n  = 2 , 3 , 4 ,  . . . ; p = 1 , 2 ,  . . . , n - 1); cf table 2 of I. For k and 
m see the caption of table 1. 

only for only for 
p even For n = 1,2 ,  . . . ; p = 1 , 2 ,  . . . , n - 1 only for n even n -p  even 

d OAO o A m  k A m t  A m $  o A ~ / z  k A d Z  ?iA--P/Z 7rAh-L7)/2 

d* o A o  0 A - m  - d o  - k A - m t  A m $  o A n 1 2  -kAn12 & - p / z  &(n - , ) lZ  

Type a b b b b a b a a 
S I / /  I / 1 / 1 1 

t Here m = i.1, k2, . . . , *(n - 1)/2 for n odd and m = *l ,  *2,. . . , *(n  -2)/2 for n even. 
$ I n  thiscase -p/2< m < ( n  -p) /2  with A = - m  - p  for -p/2< m < n/2-p  and A = n - m  - p  for n /2-p  S 
m < ( n  -p)/2.  



I BoioviC and N BoioviC 

2.2. 'Classification of the reps of the line groups isogonal to C,, 

Table 3. The line groups Lnm ( n  = 1 , 3 , 5 , .  . , ) and Lnmm ( n  = 2,4 ,6 ,  . . . ); cf table 4 in I. 
Here O <  k < T ;  m = 1 , 2 , .  . . , ( n  - 1)/2 for n odd, while m = 1 , 2 ,  . . , , ( n  -2)/2 for n 
even; p = ( y  A). 

For n = 1, 2,3,  

and only for n = 2q = 2,4 ,6 ,  

Table 4. The line groups Lnc ( n  = 1 ,3 ,5 ,  . . . ) and Lncc ( n  = 2 , 4 , 6 ,  . . . ); cf table 5 in I. For 
k,  m and P see the caption of table 3; F = (-: A). (i) The data for the reps OAO, 80, oE,,-,, 
oA,, kAO, k B O ,  kEm,-m, kAq and kBq coincide with those given in table 3 for the 
respective reps of Lnm and Lnmm. 

(ii) For n = 1 , 2 , 3 , .  . . only n = 2 q = 2 , 4 , 6 , .  . . 

d A0 rEm,-m rrA, 
d* 30 r r 6 n - m  *RI 
Type b C b 
S I F I 

Table 5. The line groups L(2q),mc ( n  = 29 = 2 ,4 ,6 ,  . . . ); cf table 6 in I. Here 0 < k < T 

and I = (A ?). (i) For OAO, OBO, oEm,-m, oA,, OB,, d o ,  kBo, kEm.-m, kAq and kBq cf table 3. ' 

(ii) For q = 1 , 2 , 3 , .  . . only q = 20 = 2 ,4 ,6 ,  . . . 

.i Here m = 1,2 ,  . , . , ( q  - 1)/2 for q odd and m = 1,2 ,  . . . , ( 4  -2112 for q even; f i  = q - m 

2.3. Classification of the reps of the line groups isogonal to c n h  

Table 6. The line groups Lnlm ( n  = 1 , 2 , 3 , .  , . ); cf table 8 in I. For k ,  m and P see the 
caption of table 3. 

For n = 1 , 2 , 3 , .  . . only n = 2q = 2,4 ,  6, . . . 

d oA; oAA"~ -:EO -;Em A$ AA" oA: -:Eq A: 
d* oA$ o A ? ~  -:Eo -kE-m A$ &?m oA: -@q ,A: 
Type a b a b a b a a a 
S 1 I P I 1 I 1 P 1 
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Table 7. The line groups L(2q),/m ( n  = 2q = 2 , 4 , 6 ,  . . . ); cf table 9 in I. For k,  m and P see 
the caption of table 3. (i) For the reps oA;, oAZ, oAt ,  -LEo, -:E,,,, -:Eq see the 
corresponding entries of table 6 .  

(ii) For q = I, 2 , 3 , .  . . o n l y f o r q = 2 v = 2 , 4 , 6 ,  . . .  

i Here m = 1,2 ,  . . . , (q - 1)/2 for q odd and m = 1 , 2 ,  . . . , (q -2112 for q even; f i  = 4 - m. 

2.4. Classification o f  the reps of the line groups isogonal to SZ, 
- 

Table 8. The line groups LE ( n  = 1, 3, 5, . . . ) and L(2n) ( n  = 2 , 4 , 6 ,  . . . ); cf table 11 in I. 
For k,  m and P see the caption of table 3 ;  F = (-: A ) .  

For n = 1 , 2 , 3 , .  . . only n = 2q = 2 , 4 , 6 , .  . . 

d oA: oAZ -;EO -;Em Ai AZ oA -;Eq ,A,+ 
d* oAg o A Z m  - 8 0  -kE-" oA 4 -kEq Ai 
Type a b a b a b b C b 
S 1 I P I 1 I I F / 

2.5. Classification of the reps of the line groups isogonal to D, 

Table 9. The line groups Ln2 ( n  = 1 , 3 , 5 , .  . . ) and Ln22 ( n  = 2 , 4 , 6 , .  . . j; cf table 13 in I. 
For k,  m and P see the caption of table 3. All these reps are of type a. 

For n = 1 , 2 , 3 , .  . . only n = 29 = 2 , 4 , 6 ,  

d o A i  oEZm -:Eo -LE,"* ,E," oA 4: - 2 q  A: 
S 1 P P P 1 P 1 P 1 

t Here m = +l, *2, , . , , *(n  - 1j /2  for n odd and m = *l, *2,. . . , * ( n  -2) /2  for n even. 

Table 10. The line groups Lnp2 ( n  = 3 , 5 , 7 ,  , . . )and Ln,22 ( n  = 2 , 4 , 6 ,  . . . ); cf table 14 in 
I. For k,  m and Psee the caption of table 3. (i) oAg, oE,", oA:, -:Eo, -:E,"', -:Eq same as 
in table 9. All these reps are of type a. 

For n = 1 , 2 , 3 , .  . , ; 
p = 1,.  . . , n - 1 (ii) only for p even only for n - p  even 

d -E:t A% A ;n - P I / *  

S P 1 1 

*Here - p / 2 < m < ( n - p ) / 2 ;  f i = - m - p  for - p / 2 < m < n / 2 - p  and f i = n - m - p  for 
n / 2 - p s m < ( n - p ) / 2 .  
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2.6. Classification of the reps of the line groups isogonal to D,d 

Table 11. 'The line groups Liim ( n  = 1 ,3 ,5 ,  . . . ) and L(G)2m ( n  = 2 , 4 , 6 ,  . . . ); cf tables 5 
and 6 in 11. Here k ,  m and P are the same as in  table 3 ;  

where 

For n = 1 , 2 , 3 , .  , . 

and only for n = 2q = 2 ,4 ,  6, . . . 

Table 12. The line groups LAC ( n  = 1 , 3 , 5 , .  . . ) and L(%)2c ( n  = 2 ,4 ,6 ,  . . . ); cf table 7 in 
11. For k,  m and P see the caption of table 3. (i) The data for the reps ciA:, OB:, oE&,, 
0Eq, &A,, k E B o ,  :Gm,-m, -;E% and -:E;: coincide with the corresponding ones in 
table 11. 

- k  - k  - 

(ii) For n = 1 , 2 , 3 , .  , . only n = 2q = 2 ,4 ,6 ,  

2.7. Classification of the reps of the line groups isogonal to D,h 

Table 13. The line groups L(%)2m ( n  = 1 , 3 , 5 ,  . . . ) and Ln/mmm ( n  = 2 , 4 , 6 ,  . . . ); cf 
tables 8 and 9 in 11. For k ,  m and P see the caption of table 3 ;  I = (A r) and H = (: E). All 
these reps are of type a. 

For n = 1,'2, 3, 

and only for n = 2q = 2 , 4 , 6 , .  . , 
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Table 14. The line groups I ,(G)2c ( n  = 1 , 3 , 5 , .  , . ) and I,n/mcc ( n  = 2 , 4 , 6 , .  . . ); cf table 
10  in 11. For k,  m and P see the caption of table 3. (i) For OB,", oE;,-,, oA:, OB:, 
..k - k  -  EA,, ~ E B ~ ,  ;G,,,-,,,, -:EAo and -:EB, see table 13. 

(ii) For n = 1 , 2 , 3 , .  . . only n = 29 = 2 , 4 , 6 ,  . . . 

Table 15. The line groups L(2q),/mcm ( n  = 2q = 2 , 4 , 6 ,  . . . ); cf table 11 in 11. For k,  m 
and P see the caption of table 3; I = (A y )  and H = (g (i) oA,", OB:, oE;,-,, OAT, OB:, 
-k -k - k  kEAo, kEBo, kGm,-,,, and . - i ~ ~ ~  as in table 13. AII these reps are of type a. 

(ii) For q = 1 , 2 , 3 , .  . . only q = 2u = 2 , 4 , 6 ,  . . . 

d ,E$ ,E% ,GE;IE? ,E:,-" 
S P P H I 

t Here m = 1, 2, . . . , (q - 1)/2 for y odd and m = 1 , 2 ,  . . . , (q -2)/2 for q even; f i  = q - m. 

3. Further applications 

3.1. Coreps and UMAM reps of LA = L + 8L 

In accordance with our physical motivation, attention was focused onto extra 
degeneracies arising from time-reversal invariance of the Hamiltonian; however, tables 
1-15 contain more information. The grey line group LA = L +  8L = LO{E, 8 }  contains 
both linear and antilinear operators so that one might use irreducible corepresentations 
(coreps; cf Jansen and Boon 1967) or unitary matrix-antimatrix representations 
(UMAM reps; cf Herbut et a1 1980), to label the bands etc. Now, given a rep d (L), the 
data presented in the above tables are sufficient to write down the corresponding coreps 
or UMAM reps immediately; the recipes (Jansen and Boon 1967, Herbut et a1 1980) are 
summarised in table 16. 

Table 16. (i) Construction of coreps D(LA) out of given reps d(L). 

(ii) Construction of UMAM reps D ~ ( L ~ )  out of d ( ~ ) :  

D ~ ( R  1 T )  = D ( R  I oA(e) = D ( B ) K  

D A [ B ( R / r ) ] = D A ( B ) D A ( R / ~ ) = D [ 8 ( R  l r ) ]K  (26) 

where D ( R  I T ) ,  D(0)  and D[B(R 1 T ) ]  are defined in (i) and K is the antimatrix (cf Herbut et 
al  1980), such that KM = M*K for every matrix M. Conceptual and mnemotechnical 
advantages of the UMAM rep concept arise from the homomorphism, which is restored by 
(26). 
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Note that two coreps of LA are equivalent iff they subduce equivalent reps of L 
(Jansen and Boon 1967, p 174) so that for reps of types a and c the matrices S and 
S’ = exp(iq5)S give rise to equivalent coreps. Tables 1-15 were designed to proauce a 
complete set of non-equivalent coreps and hence only one matrix S has been given for 
each such rep; for the same reason each pair of conjugate reps of type b appears only 
once in these tables. 

3.2. Symmetry adapted bases 

If a symmetry adapted basis (SAB) {G1, . . . , $n} for a rep d ( L )  is known, the data quoted 
in tables 1-15 enable one to write down the corresponding SAB for the corep D(LA),  in 
which the latter will be in its standard form as given in table 16. Let q5i = Cy=, S:$,i*, 
i = 1, . . , , n. Then the required SAB for D(LA) is 

{ $ I + ~ I , .  . - $n + 4 n >  
($1,. . . , Gn, (LT,. . . , $:} 
($1, . . . , $n,  41, . . . , 4 n }  

if d (L)  is of type a 

if d ( L )  is of type b 

if d ( L )  is of type C. 

Proofs of these statements are given for cases a and b in Jansen and Boon (1967); a 
proof for the third case can be easily reconstructed along the same lines. 

3.3. Influence of spin 

The classification of reps given here resolves the problem of finding extra degeneracies 
induced by time-reversal symmetry also when one deals with half-integral spins. In that 
case (cf Streitwolf 1971): the degeneracy is doubled for type a and b reps, while there is no 
extra degeneracy for type c reps. This might be of relevance for those approaches to 
electron spectra of polymers that go beyond the restricted Hartree-Fock method, such 
as alternant molecular orbitals, AMO (Calais 1980) or different orbitals for different 
spins, DODS (KertCsz et a1 1976, 1979) schemes etc. 

4. Concluding remarks 

The tables 1-15 enable a user to determine effortlessly whether time-reversal symmetry 
brings in some extra degeneracies of electron bands or vibration branches of a polymer 
or not; the task we set in the introduction is thus solved. However, a brief discussion of 
some overall aspects of the results obtained might be in order. 

First, a variety of possibilities is realised. Thus e.g. Ln,2 line groups have only type a 
reps, L n / m  have both a and b, and Lac have a, b and c in spite of similar structure of 
these groups and their reps. If we focus our attention on the quantum numbers 
distinguishing the reps we also observe substantial differences. Thus e.g. 

(i) 8-symmetry connects and -kEl,-l reps of L42mc,  thus bringing in extra 
two-fold star degeneracy (i.e. ~ ( k )  = ~ ( - - k ) ) ;  

(ii) similarly; 8 couples -:El and -LE-l reps of L 4 2 / m ,  but here it brings in extra 
two-fold band degeneracy (i.e. ~ ( m  = 1) = ~ ( m  = -1) throughout the Brillouin zone), 
while 

(iii) in the case of -:ET1 rep of L422 simply nothing happens when 8 is added. 
(The notions we use here are familiar in solid-state physics where analogous situations 
are encountered; for a good account see e.g. Streitwolf (1971), Cracknell (1975). 
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To recognise some general trends in this variety of cases we have to resort to 
somewhat more elaborate group theoretical concepts. First, note that here we are 
dealing with solvable groups possessing normal subgroup chains like e.g. 

T Q L ~  QLOC Q L ~ C  (3) 
or 

T a L ( 2 q ) ,  -L(2q),mc qL(2q)Jmcm (4) 

etc. (Here H 4 G means that H is a normal subgroup of G.) Utilising this fact we use 
the kAm reps (all of which are one-dimensional) of the Ln, line groups as building 
blocks to induce all the others (cf LG, I and 11). 

Next, observe that the quantum numbers of kAm (namely k and m) have kinematical 
meaning-they describe quasi-momentum (related to the translational symmetry) and 
quasi-angular momentum (related to the screw-axis symmetry) of a particle (or a 
quasi-particle), respectively. As expected from this physical interpretation, the action 
of 6 on these two quantum numbers is given by 

8 : k + - k  8 : m + - m .  ( 5 )  

At first sight some exceptions to this rule seem to appear for some special values of k 
and m, namely k = 0 or k = T and m = 0 or m = q = n/2. However, these cases also 
start fitting into the scheme ( 5 )  as soon as one takes into account appropriate 
'periodicity relations' for these reps, e.g. 

kAm (Lnp) = kt2irAm-p (Lnp) (6) 

etc, enabling conversions like = to be made. 
Then, we can proceed upwards along the subgroup chain, similar to (3) or (4), by 

adding new spatial symmetry transformations (gv, g h  or U )  and building the reps of in 
this way enlarged groups (i.e. minimal extensions ; cf LG, I and I1 for the line groups and 
Herbut et a1 (1973) for a general account). The action on k and m-again in 
accordance with their physical meaning-can be summarised as: 

(with the same explanation valid for the above-mentioned special values of k and m). 
Now we are in a position to understand why additional time-reversal symmetry 

produced such different effects in the examples (i)-(iii) given above. The systematic 
band degeneracy (among kAl(L42) and kA-l(L42) states for each k point in the 
Brillouin zone) is produced by U, in case (i) and by joint action of (+h and 8 in case (ii), 
while it is absent in case (iii), as follows from ( 5 )  and (7) .  We further conclude that this 
band degeneracy will be lifted by e.g. a homogeneous magnetic field parallel to the 
chain axis in case (ii), while it will be still preserved in case (i). A similar analysis can be 
readily performed for every line group. 
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